Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 202, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355698

RESUMEN

The study of the functioning and responses of Antarctica to the current climate change scenario is a priority and a challenge for the scientific community aiming to predict and mitigate impacts at a regional and global scale. Due to the difficulty of obtaining aerial data in such extreme, remote, and difficult-to-reach region of the planet, the development of remote sensing techniques with Unmanned Aerial Vehicles (UAVs) has revolutionized polar research. ShetlandsUAVmetry comprises original datasets collected by UAVs during the Spanish Antarctic Campaign 2021-2022 (January to March 2022), along with the photogrammetric products resulting from their processing. It includes data recorded during twenty-eight distinct UAV flights at various study sites on Deception and Livingston islands (South Shetland Islands, Antarctica) and consists of a total of 15,691 high-resolution optical RGB captures. In addition, this dataset is accompanied by additional associated files that facilitate its use and accessibility. It is publicly accessible and can be downloaded from the figshare data repository.

2.
Sci Total Environ ; 912: 169266, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38086484

RESUMEN

Cu is a vital micronutrient, but free Cu ions (Cu2+) in seawater, even at subnanomolar concentrations, can impede phytoplankton growth. Natural Cu complexation with organic ligands regulates Cu acquisition and, in most instances, reduces Cu2+ concentrations below toxic thresholds. Along the Antarctic coast, the sources and sinks of Cu and its associated ligands remain poorly defined. Despite the high productivity in the area, there are no studies on the role of trophic transfer in Cu cycling. This study explores penguin guano release of Cu and Cu ligands and its potential in neutralizing copper toxicity along the Antarctic coast. We collected guano in a Chinstrap penguin nesting location in the West coast of Deception Island and extracted its components into aqueous solution imitating natural processes. Copper concentration in guano was 0.4 mg (dry weight g)-1 constituting a potential toxic threat and showed biomagnification with respect to krill. Surface seawater samples collected from various locations varying in penguin activity, were analyzed to assess the potential influence of guano on the area. Visual examination and elevated levels of Al suggested that a substantial portion of guano was lithogenic. Consequently, only a modest 16 % of the total Cu present in guano could be extracted using mechanical methods. Notably, the concentrations of the extracted organic ligands were approximately 23 times higher than the concentrations of the extracted Cu. This significant presence of ligands effectively nullifies any potential toxicity that could have arisen from free Cu2+ ions. Guano ligands' conditional stability constants were lower than those in surface seawater suggesting phytoplankton exudation was the main ligand source in the area. Overall, guano acts as a key node for Cu cycling in coastal Antarctic waters but its deleterious potential is neutralized by ligands from krill digestion and the high background concentration of phytoplankton exudates.


Asunto(s)
Spheniscidae , Oligoelementos , Animales , Cobre , Regiones Antárticas , Fitoplancton , Iones
3.
Sci Total Environ ; 902: 166448, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37607628

RESUMEN

Penguin guano has been considered as a suitable bioindicator of the exposure to environmental contaminants in Antarctic environment. Although trace metal content values in penguin guano have been widely reported, the kinetics of their mobility in seawater have not been determined. In the present study, we have estimated the release rate of dissolved Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn from Gentoo (Pygoscelis papua) penguins guano to Antarctic seawater by 120 h laboratory and at external natural conditions of temperature and light experiments. A mathematical model using two metal pools guano (labile and equilibrium) and seawater compartments considering pseudo-first-order kinetics, is proposed in order to interpret and predict the release of trace metals. A good statistical agreement between experimental and modelled concentration values allows us obtention of kinetic parameters and partition coefficients (Kdi). These values allow to estimate releases into seawater from 5400 to 6.3 µg/day·penguin of Cu and V, respectively. More than 50 % of the initial content of all the studied elements are released during the first two hours, reaching 90 % release in the decreasing order of speed Ni â‰« Cu ≈ Mo > Mn > Co > Cd ≈ Pb; periods of up to one hour, Fe, V and Zn reach a maximum release and are then readsorbed. Equilibrium releases >90 % for Mo and Cd, and 55 % - 46 % for Co, Ni, Pb and Mn are obtained; Zn with 5.4 %, V with 1.7 % and Fe with 0.88 % show the lowest values. With an overwhelming growth of estimated population south of 60°S of 259.750 breeding pairs we estimate that the Gentoo penguin population is releasing annually in the Southern Ocean, 716 kg Cu, 188 kg Mn, 113 kg Fe, 102 kg Zn, 17.7 kg Mo, 12.0 kg Ni, 8.70 kg Cd, 4.59 kg Co, 6.27 kg Pb and 0.790 kg V of soluble metals.


Asunto(s)
Spheniscidae , Oligoelementos , Animales , Monitoreo del Ambiente , Regiones Antárticas , Cadmio , Plomo , Oligoelementos/análisis
4.
Nat Commun ; 14(1): 1781, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041162

RESUMEN

Iron plays a crucial role in the high-nutrient, low-chlorophyll Southern Ocean regions, promoting phytoplankton growth and enhancing atmospheric carbon sequestration. In this area, iron-rich Antarctic krill (Euphausia superba) and baleen whale species, which are among their main predators, play a large role in the recycling of iron. However, penguins have received limited attention despite their representing the largest seabird biomass in the southern polar region. Here, we use breeding site guano volumes estimated from drone images, deep learning-powered penguin census, and guano chemical composition to assess the iron export to the Antarctic waters from one of the most abundant penguin species, the Chinstrap penguin (Pygoscelis antarcticus). Our results show that these seabirds are a relevant contributor to the iron remobilization pool in the Southern Ocean. With an average guano concentration of 3 mg iron g-1, we estimate that the Chinstrap penguin population is recycling 521 tonnes iron yr-1, representing the current iron contribution half of the amount these penguins were able to recycle four decades ago, as they have declined by more than 50% since then.


Asunto(s)
Euphausiacea , Spheniscidae , Animales , Regiones Antárticas , Biomasa , Océanos y Mares
5.
Sci Total Environ ; 858(Pt 2): 159662, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36302423

RESUMEN

This study was conducted to address the changes in the surface distribution of trace metals (cobalt, copper, iron, cadmium, nickel, zinc, lead and molybdenum) as they are advected from the Gulf of Cadiz to the Alboran Sea, through the Strait of Gibraltar (south Iberian Peninsula), regions of great ecosystemic importance. Trace metals concentrations were measured in samples collected during two oceanographic cruises, together with the main factors affecting their spatial distribution and temporal variability (i.e., wind and surface currents). Several rivers, the main source of trace metals in this region, flow into the Gulf of Cadiz which is connected with the Alboran Sea through the Strait of Gibraltar by the general circulation pattern. The surface circulation pattern leads to an offshore-eastward gradient that is highly influenced by wind variability. An increase in vertical turbulence induced by the winds or the tidal cycle causes the dilution of trace metals' concentration by mixing rich-metal superficial waters with poor-metal subsurface waters. Additionally, along the eastward displacement of surface waters, several water retention zones have been described (Trafalgar, Camarinal, the Coastal Cyclonic Gyre) that imply an increase in trace metals concentration close to the coast. In addition, our results suggest that the coastal edges of the Strait of Gibraltar also act as a source of certain metals to the Alboran Sea, probably due to the industries in the proximity areas.


Asunto(s)
Metales Pesados , Oligoelementos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Oligoelementos/análisis , Metales/análisis , Cadmio/análisis , Metales Pesados/análisis
6.
Mar Pollut Bull ; 184: 114161, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36179387

RESUMEN

The redox speciation of iron was determined during the iron fertilization LOHAFEX and for the first time, the chemiluminescence assay of filtered and unfiltered samples was systematically compared. We hypothesize that higher chemiluminescence in unfiltered samples was caused by Fe(II) adsorbed onto biological particles. Dissolved and particulate Fe(II) increased in the mixed layer steadily 6-fold during the first two weeks and decreased back to initial levels by the end of LOHAFEX. Both Fe(II) forms did not show diel cycles downplaying the role of photoreduction. The chemiluminescence of unfiltered samples across the patch boundaries showed strong gradients, correlated significantly to biomass and the photosynthetic efficiency and were higher at night, indicative of a biological control. At 150 m deep, a secondary maximum of dissolved Fe(II) was associated with maxima of nitrite and ammonium despite high oxygen concentrations. We hypothesize that during LOHAFEX, iron redox speciation was mostly regulated by trophic interactions.


Asunto(s)
Compuestos de Amonio , Hierro , Nitritos , Polvo , Oxidación-Reducción , Compuestos Ferrosos , Oxígeno , Fertilización
7.
Chemosphere ; 307(Pt 3): 136043, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35985387

RESUMEN

Sunscreens contain ZnO particles used as a UV filter cause adverse effects in the marine environment through the release of this metal into seawater and its bioaccumulation in organisms. A mathematical model using sunscreen colloidal residues, seawater and R. philippinarum clams as differentiated compartments, is proposed in order to interpret both the kinetic pattern and the bioaccumulation of Zn in clams. Two kinetic laboratory experiments were conducted, both with and without clams exposed to sunscreen concentrations from 0 to 200 mg L-1. Both the lowest value of uptake rate coefficient obtained when 5 mg L-1 of sunscreen is added (0.00688 L g-1 d-1) and the highest obtained at sunscreen addition of 100 mg L-1 (0.0670 L g-1 d-1), predict a lower bioavailability of Zn in a complex medium such as the seawater-sunscreen mixtures, in comparison to those studied in the literature. The efflux rate coefficient from clams to seawater increased from 0 to 0.162 d-1 with the sunscreen concentrations. The estimated value of the inlet rate coefficient at all studied concentrations indicates that there is a negligible colloidal Zn uptake rate by clams, probably due to the great stability of the organic colloidal residue. An equilibrium shift to higher values of Zn in water is predicted due to the bioconcentration of Zn in clams. The kinetic model proposed with no constant Zn (aq) concentrations may contribute to a more realistic prediction of the bioaccumulation of Zn from sunscreens in clams.


Asunto(s)
Bivalvos , Contaminantes Químicos del Agua , Óxido de Zinc , Animales , Bioacumulación , Bivalvos/química , Protectores Solares , Agua , Zinc
8.
Sci Total Environ ; 841: 156611, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35691357

RESUMEN

Surgical face masks are more present than ever as personal protective equipment due to the COVID-19 pandemic. In this work, we show that the contents of regular surgical masks: i) polypropylene microfibres and ii) some added metals such as: Al, Fe, Cu, Mn, Zn and Ba, may be toxic to some marine life. This work has got two objectives: i) to study the release rate of the products from face masks in marine water and ii) to assess the toxicity in Phaeodactylum tricornutum of these by-products. To achieve these two objectives, we performed release kinetic experiments by adding masks in different stages of fragmentation to marine water (i.e. whole face masks and fragments of them 1.52 ± 0.86 mm). Released microfibres were found after one month in shaking marine water; 0.33 ± 0.24 and 21.13 ± 13.19 fibres·mL-1 were collected from the whole and fragmented face masks, respectively. Significant amounts of dissolved metals such as Mn, Zn and Ni, as well as functional groups only in the water containing the face mask fragments were detected. Water from both treatments was employed to study its toxicity on the marine diatom. Only the water from the face mask fragments showed a significant, dose-dependent, decrease in cell density in P. tricornutum; 53.09 % lower than in the controls. Although the water from the face mask fragments showed greater effects on the microalgae population than the water from the whole face mask, the latter treatment did show significant changes in the photosynthetic apparatus and intrinsic properties of the cells. These results indicate that during fragmentation and degradation face masks a significant chemical print can be observed in the marine environment.


Asunto(s)
COVID-19 , Diatomeas , Contaminantes Químicos del Agua , Humanos , Máscaras , Pandemias , Agua/metabolismo , Contaminantes Químicos del Agua/metabolismo
9.
Mar Pollut Bull ; 176: 113417, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35152115

RESUMEN

Certain ultra-violet filter (UVF) components of solar creams have negative impacts on coral reefs and have been prohibited in international tourism destinations (i.e., Hawaii, Florida, and Palau) to protect coral reefs. In the Mediterranean coasts which are also hotspots of international tourism and where endemic seagrass Posidonia oceanica forms extensive meadows, the accumulation of UVF components have not been studied. We report for the first time, that the rhizomes of P. oceanica internally accumulated UVFs BP3, BP4, AVO, 4MBC and MeBZT and the paraben preservative MePB. The components BP4 and MePB occurred in higher concentrations reaching up to 129 ng g-1 dw and 512 ng g-1 dw, respectively. This work emphasizes the need for more experimental studies on the effects of UVFs on seagrasses and check if we should follow suit to prohibit certain UVFs to protect this species as what has been done in other regions to protect corals.


Asunto(s)
Alismatales , Protectores Solares , Florida , Hawaii , Mar Mediterráneo
10.
Sci Total Environ ; 822: 153433, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35093350

RESUMEN

In this study, seawater quality was monitored with high-resolution satellite imagery during the 2021 volcanic eruption (September-December) on La Palma Island (Spain), the longest recorded in the history of the island, and the most destructive in the last century in Europe. The Sentinel-2A/B twin satellites and Landsat-8 satellite were jointly used as an optical constellation, which allowed us to successfully characterize the short- and medium-term evolution of the new lava delta and subsequent impact on the seawater. Robust atmospheric and sunglint correction approaches were applied to thoroughly quantify the environmental changes caused on the adjacent coastal waters. The cloud and volcanic ash coverage remained very high over the coast during the event, so restricted information with 14 images (45% of the total scenes) was retrieved from the multi-sensor approach. Nevertheless, the availability of pre-, syn-, and post-eruption satellite products allowed us to map and detect the main water quality variations in the marine environment. On the one hand, during the eruption, a change in the properties of the water quality was observed, with a markedly increased turbidity on the western side of the island near the new lava delta due to the deposition of volcanic ash and material. On the other hand, chlorophyll-a concentration did not significantly increase, algal blooms were not observed, and oligotrophic conditions were not swiftly altered towards eutrophic conditions. This information offered an excellent opportunity to characterize the emplacement of the new lava delta and its impact on the marine environment in La Palma. The present multi-sensor strategy is an excellent opportunity to highlight the potential of remote sensing technology as a relevant and powerful tool for future hazard monitoring and assessment during catastrophes and for a better interpretation of their impact on the marine environment.


Asunto(s)
Erupciones Volcánicas , Calidad del Agua , Monitoreo del Ambiente , Eutrofización , Imágenes Satelitales , España
11.
Sci Rep ; 11(1): 21717, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34741078

RESUMEN

Antarctica plays a fundamental role in the Earth's climate, oceanic circulation and global ecosystem. It is a priority and a scientific challenge to understand its functioning and responses under different scenarios of global warming. However, extreme environmental conditions, seasonality and isolation hampers the efforts to achieve a comprehensive understanding of the physical, biological, chemical and geological processes taking place in Antarctica. Here we present unmanned aerial vehicles (UAVs) as feasible, rapid and accurate tools for environmental and wildlife research in Antarctica. UAV surveys were carried out on Deception Island (South Shetland Islands) using visible, multispectral and thermal sensors, and a water sampling device to develop precise thematic ecological maps, detect anomalous thermal zones, identify and census wildlife, build 3D images of geometrically complex geological formations, and sample dissolved chemicals (< 0.22 µm) waters from inaccessible or protected areas.

12.
Chemosphere ; 285: 131423, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34329144

RESUMEN

Penguins dominate the Antarctic avifauna. As key animals in the Antarctic ecosystem, they are monitored to evaluate the ecological status of this pristine and remote region and specifically, they have been used as effective bioindicators suitable for long-term monitoring of metals in the Antarctic environment. However, studies about the role of this emblematic organism could play in the recycling of trace metals (TMs) in the Antarctic ecosystem are very limited. In this study we evaluate, using the peer review research articles already published and our own findings, the distribution of metals (i.e., Ca, Fe, Al, Na, Zn, Mg, Cu, K, Cd, Mn, Sr, Cr, Ni, Pb, Hg, V, Ba, Co, La, Ag, Rb, Hf, Sc, Au and Cs) and metalloids (As and Sb), measured in different biotic matrices, with emphasis on guano, of the Chinstrap (Pygoscelis antarcticus), Adélie (Pygoscelis adeliae) and Gentoo (Pygoscelis papua) penguins. Regarding bioactive metals, the high concentrations (µg g-1 dry weight) of Cu (2.0 ± 1.4) x 102, Fe (4.1 ± 2.9) x 102, Mn (30 ± 34) and Zn (210 ± 90) reported in the guano from all the penguin species studied including our data, are of the same order of magnitude as those reported for whale feces (µg g-1 dry weight): Cu (2.9 ± 2.4) x 102, Fe (1.5 ± 1.4) x 102, Mn (28 ± 17) and Zn (6.2 ± 4.3) x 102, and one order of magnitude higher than the metal contents in krill (µg g-1 dry weight) of Cu (10.2 ± 5.5), Fe (24 ± 29) and Zn (13.5 ± 1.7). This suggest that penguin's excretion products could be an important source of these essential elements in the surface water, with an estimated annual release on a breeding season for Cu, Fe, Mn, Zn respectively of 28, 56, 4 and 29 tons, for the Chinstrap, Adélie and Gentoo penguins. The results provide evidence on the potential influence of penguins recycling TMs in the surface layer of the water column.


Asunto(s)
Spheniscidae , Oligoelementos , Animales , Regiones Antárticas , Ecosistema , Océanos y Mares , Oligoelementos/análisis
13.
J Environ Manage ; 289: 112495, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33831761

RESUMEN

This study quantifies the degree of pollution and assess the ecological risk of As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn in sediments and soils of the Limoncocha Biological Reserve (Ecuador), identified as a Ramsar site with high ecological and socioeconomic value. The hydrologic system of the Reserve is mainly formed by two rivers that drain into the Limoncocha lagoon, which occupies only five percent of the protected area but support a high anthropic influence. Local statistical baseline of studied potentially toxic elements is established using cumulative frequency method, and Al is selected as reference element due to the good correlation with the studied elements. The grade of pollution and the potential ecological risk are evaluated applying three individual (Contamination Factor, Geo-accumulation Index and Enrichment Factor) and six integrated (Degree and modified degree of contamination, Pollution Load Index, Nemerow and modified Nemerow pollution indexes and potential ecological risk index) indices. Results analysis are based on the combined application of traditional statistics, multivariate data analysis and self organizing maps. Outcomes suggest to classify sediments and soils as "moderate contamination and enrichment" due mainly to the concentrations of Cu (66.4-110 mg/kg) and Cd (0.0262-0.808 mg/kg), derived from domestic wastewaters and agricultural activities, and in a lesser extent due to Mo (0.822-4.37 mg/kg), Ni (10.3-25.8 mg/kg), Co (7.27-24.8 mg/kg) and V (60.3-178 mg/kg), derived from oil field drilling activities. The distributions of As (0.328-8.83 mg/kg), Ba (143-1100 mg/kg), Pb (7.20-26.5 mg/kg), Zn (60.1-276 mg/kg) and Cr (10.1-48.6 mg/kg) are heterogeneous in the studied sampling sites. Sediments located next to the pier and at the central area of the Limoncocha lagoon, show moderate potential risk and according to sediment quality guidelines, the calculated mean Effect Range Median quotient (mERMq) classify the sites as medium-low priority risk level. A three-level classification of a mean quotient based on soil quality and soil potential uses is proposed. Soil sites with high anthropogenic activities show low to moderate potential ecological risk being classified as poor soil quality sites but with all potential soil uses allowed according to the legal limits for land uses in Ecuador.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , China , Ecuador , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Humedales
14.
PLoS One ; 15(12): e0243591, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33326482

RESUMEN

Sunscreen is released into the marine environment and is considered toxic for marine life. The current analytical methods for the quantification of sunscreen are mostly specific to individual chemical ingredients and based on complex analytical and instrumental techniques. A simple, selective, rapid, reproducible and low-cost spectrophotometric procedure for the quantification of commercial sunscreen in seawater is described here. The method is based on the inherent properties of these cosmetics to absorb in the wavelength of 300-400 nm. The absorption at 303 nm wavelength correlates with the concentration of most commercial sunscreens. This method allows the determination of sunscreens in the range of 2.5-1500 mg L-1, it requires no sample pretreatment and offers a precision of up to 0.2%. The spectrophotometric method was applied to quantify sunscreen concentrations at an Atlantic Beach with values ranging from 10 to 96.7 mg L-1 in the unfiltered fraction and from the undetectable value to 75.7 mg L-1 in the dissolved fraction. This method is suggested as a tool for sunscreen quantifications in environmental investigations and monitoring programs.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua de Mar/análisis , Espectrofotometría Ultravioleta/métodos , Protectores Solares/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/economía , Límite de Detección , Espectrofotometría Ultravioleta/economía , Factores de Tiempo
15.
Chemosphere ; 257: 127190, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32480091

RESUMEN

Contamination by sunscreens has become a serious environmental problem due to the increasing use of these products in coastal regions. Their complex chemical composition supposes an input of different chemical compounds capable of producing toxic effects and repelling organisms. The aim of the current study was to experimentally check the repellency of three commercial sunscreens [A (lotion), B (gel) and C (milk spray)] by assessing the escape (displacement towards areas with lower sunscreen levels) of the estuarine shrimp Palaemon varians exposed (4 h) to a gradient (0-300 mg/L) of the sunscreens in a heterogeneous non-forced exposure scenario. Additionally, mortality and immobility (72 h) were checked in a traditional forced exposure scenario. Considering that the toxicity of sunscreens is a little controversial regarding their chemical availability in the medium, two different methods of sunscreen solubilisation were tested: complete homogenization and direct immersion. Very low mortality was observed in the highest concentration of sunscreens A and C applied by direct immersion; however, for sunscreen B, the main effect was the loss of motility when homogenization was applied. Repellency was evidenced for two sunscreens (A and B) applied by direct immersion. The homogenization in the medium seemed to lower the degree of repellency of the sunscreens, probably linked to the higher viscosity in the medium, preventing the motility of shrimps. By integrating both short-term responses (avoidance and mortality/immobility), the PID (population immediate decline) calculated showed that avoidance might be the main factor responsible for the reduction of the population at the local scale.


Asunto(s)
Palaemonidae/fisiología , Protectores Solares/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Palaemonidae/efectos de los fármacos , Alimentos Marinos
16.
Sci Total Environ ; 688: 1359-1372, 2019 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-31726565

RESUMEN

Mining impacts on coastal environments have been extensively studied around the world. However, the role of Submarine Groundwater Discharge (SGD) and Porewater Exchange (PEX) as pathways for pollutants from mining waste deposits into seawater has been largely overlooked. Portmán Bay is located in the Cartagena-La Unión Pb-Zn sulphur mining district in Murcia, SE of Spain. The disposal of about 60 million tons of metal-rich mine tailings from 1957 to 1990 led to the infill of most of the bay. Although the effects of metals on indicator organisms have been shown previously, there is a major lack of knowledge on the release of dissolved metals from the emerged tailing deposit into the sea, more than 25 years after the closure of the mining activities. Samples for Ra isotopes (223Ra, 224Ra, 226Ra and 228Ra) and dissolved metals (Ag, Cd, Co, Pb, Zn) were analyzed in porewaters and seawater in order to separately estimate SGD and PEX driven dissolved metal fluxes. Our results show a continuous release of dissolved metals into the sea driven by both PEX and SGD. Most of dissolved metals are remobilized and released into the water column by PEX, which is a ubiquitous mechanism acting along the shoreline. Although SGD only represents 13% of the water flow, it drives large fluxes of dissolved Fe into the sea, mainly restricted to the west side of the bay. Large inputs of dissolved Fe2+ from the anoxic tailings deposit trigger a massive precipitation of iron hydroxides that enables the removal of most dissolved metals from the water column. This study highlights the role of PEX and SGD as significant mechanisms for the land to ocean transfer of dissolved metals from coastal mine tailings deposits.

17.
Front Microbiol ; 10: 1903, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31507547

RESUMEN

Posidonia oceanica, an endemic seagrass of the Mediterranean Sea harbors a high diversity of N2-fixing prokaryotes. One of these is Halothece sp., a unicellular N2-fixing cyanobacteria detected through nifH analysis from the epiphytes of P. oceanica. The most related strain in culture is Halothece sp. PCC 7418 and this was used as the test organism in this study. In the Mediterranean Sea, phosphorus (P) and iron (Fe) can be the major limiting nutrients for N2 fixation. However, information about the mechanisms of P-acquisition and the role of metals (i.e., Fe) in these processes for N2-fixing bacteria is scarce. From our genomic analyses of the test organism and other phylogenetically related N2-fixing strains, Halothece sp. PCC 7418 is one of the strains with the greatest number of gene copies (eight copies) of alkaline phosphatases (APases). Our structural analysis of PhoD (alkaline phosphatase type D) and PhoU (phosphate acquisition regulator) of Halothece sp. PCC 7418 showed the connection among metals (Ca2+ and Fe3+), and the P-acquisition mechanisms. Here, we measured the rates of alkaline phosphatase activity (APA) through MUF-P hydrolysis under different combinations of concentrations of inorganic P ( P O 4 3 - ) and Fe in experiments under N2-fixing (low NO 3 - availability) and non-N2 fixing (high NO 3 - availability) conditions. Our results showed that APA rates were enhanced by the increase in Fe availability under low levels of P O 4 3 - , especially under N2-fixing conditions. Moreover, the increased P O 4 3 - -uptake was reflected in the increased of the P-cellular content of the cells under N2 fixation conditions. We also found a positive significant relationship between cellular P and cellular Fe content of the cells (r 2 = 0.71, p < 0.05). Our results also indicated that Fe-uptake in Halothece sp. PCC 7418 was P and Fe-dependent. This study gives first insights of P-acquisition mechanisms in the N2-fixing cyanobacteria (Halothece sp.) found in P. oceanica and highlights the role of Fe in these processes.

18.
Environ Sci Technol ; 53(17): 10177-10187, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31411031

RESUMEN

Studies detailing the environmental impact of sunscreen products on coastal ecosystems are considered a high priority. In the present study, we have determined the release rate of dissolved trace metals (Al, Cd, Cu, Co, Mn, Mo, Ni, Pb, and Ti) and inorganic nutrients (SiO2, P-PO43-, and N-NO3-) from a commercial sunscreen in seawater, and the role of UV radiation in the mobilization of these compounds. Our results indicate that release rates are higher under UV light conditions for all compounds and trace metals except Pb. We have developed a kinetic model to establish the release pattern and the contribution to marine coastal waters of dissolved trace metals and inorganic nutrients from sunscreen products. We conservatively estimate that sunscreen from bathers is responsible for an increase of dissolved metals and nutrients ranging from 7.54 × 10-4 % for Ni up to 19.8% for Ti. Our results demonstrate that sunscreen products are a significant source of metals and inorganic nutrients to coastal waters. The normally low environmental concentrations of some elements (e.g., P) and the toxicity of others (e.g., Pb) could be having a serious adverse effect on marine ecology in the Mediterranean Sea. This risk must not be ignored.


Asunto(s)
Protectores Solares , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Mar Mediterráneo , Metales , Nutrientes , Agua de Mar , Dióxido de Silicio
20.
Sci Total Environ ; 652: 907-914, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30380497

RESUMEN

Understanding the biogeochemical cycles and distribution of trace elements in the marine environment is one of the main challenges in chemical oceanography. We describe herein the trace metal composition of the uppermost surface ocean of various oceanographic regions (Arctic and Southern Oceans, subtropical Atlantic Ocean, and Mediterranean Sea). Our results show that trace metals in the top meter of the ocean are found in two clearly differentiated layers according to metal abundance and stoichiometry, namely the surface microlayer (SML) and its underlying subsurface water (SSW). Although metal concentrations in the subsurface dissolved fractions vary regionally and globally, it shows a singular metal stoichiometric signature. This work emphasizes the need to study of the SML as unique compartment to improve our understanding of the biogeochemical cycle of trace metals in the surface ocean, especially for metals, such as Pb, Fe and Cu, which are abundant in the SML.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...